Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 2809, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30809001

RESUMO

Grapevine (Vitis vinifera L.) is importantly cultivated worldwide for table grape and wine production. Its cultivation requires irrigation supply, especially in arid and semiarid areas. Water deficiency can affect berry and wine quality mostly depending on the extent of plant perceived stress, which is a cultivar-specific trait. We tested the physiological and molecular responses to water deficiency of two table grape cultivars, Italia and Autumn royal, and we highlighted their different adaptation. Microarray analyses revealed that Autumn royal reacts involving only 29 genes, related to plant stress response and ABA/hormone signal transduction, to modulate the response to water deficit. Instead, cultivar Italia orchestrates a very broad response (we found 1037 differentially expressed genes) that modifies the cell wall organization, carbohydrate metabolism, response to reactive oxygen species, hormones and osmotic stress. For the first time, we integrated transcriptomic data with cultivar-specific genomics and found that ABA-perception and -signalling are key factors mediating the varietal-specific behaviour of the early response to drought. We were thus able to isolate candidate genes for the genotype-dependent response to drought. These insights will allow the identification of reliable plant stress indicators and the definition of sustainable cultivar-specific protocols for water management.


Assuntos
Desidratação , Secas , Transcriptoma , Vitis/genética , Metabolismo dos Carboidratos/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Estrutural do Genoma , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico , Vitis/metabolismo , Vitis/fisiologia
2.
Springerplus ; 5(1): 1562, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652135

RESUMO

Vitis vinifera L. varieties were spread through cuttings following historic migrations of people, trades, or after biological crises due to pests outbreaks. Some today's varieties could be more than a 1000 years old and, although over the centuries these varieties generated most of the remaining cultivars, their origin could be impossible to track back. The Italian grapevine biodiversity is one of most important, most likely due to its strategic position in the middle of the Mediterranean sea. Unravelling of its structure is challenging because of its complexity and the lack of historical documentation. In this paper molecular data are compared with historical documentations. Simple Sequence Repeats fingerprinting are molecular markers best suited to investigate genetic relationships and identify pedigrees. South-Italian germplasm was studied with 54 nuclear microsatellites. A family was identified, consisting of two parents and three siblings and further genetically characterized with six nuclear and five chloroplast microsatellites and described with ampelographic and phylometric analysis. Although these latter were not informative for the kinship identification. The common Bombino bianco was the female parent and the previously unknown Uva rosa antica was the male parent. Bombino nero, Impigno and the popular Uva di Troia, all typical of the south-east Italy, were the offspring. Further research showed that the Uva rosa antica was a synonym of Quagliano and Bouteillan noir, both minor varieties. Quagliano was considered to be autochthonous of some alpine valleys in the north-west of Italy and Bouteillan noir is a neglected variety of Vancluse in France. This finding uncovers the intricate nature of Italian grape cultivars, considered peculiar of an area, but possibly being the remains of ancient latin founding varieties. Consequently, intriguing new hypotheses are discussed and some conclusions are drawn, based on the peculiar geographical origin of the parents, on the distribution of the offspring, on the chance of a single, and perhaps intentional, crossing event.

3.
Mol Biol Evol ; 26(8): 1889-900, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19429672

RESUMO

The evolutionary history of alpha-satellite DNA, the major component of primate centromeres, is hardly defined because of the difficulty in its sequence assembly and its rapid evolution when compared with most genomic sequences. By using several approaches, we have cloned, sequenced, and characterized alpha-satellite sequences from two species representing critical nodes in the primate phylogeny: the white-cheeked gibbon, a lesser ape, and marmoset, a New World monkey. Sequence analyses demonstrate that white-cheeked gibbon and marmoset alpha-satellite sequences are formed by units of approximately 171 and approximately 342 bp, respectively, and they both lack the high-order structure found in humans and great apes. Fluorescent in situ hybridization characterization shows a broad dispersal of alpha-satellite in the white-cheeked gibbon genome including centromeric, telomeric, and chromosomal interstitial localizations. On the other hand, centromeres in marmoset appear organized in highly divergent dimers roughly of 342 bp that show a similarity between monomers much lower than previously reported dimers, thus representing an ancient dimeric structure. All these data shed light on the evolution of the centromeric sequences in Primates. Our results suggest radical differences in the structure, organization, and evolution of alpha-satellite DNA among different primate species, supporting the notion that 1) all the centromeric sequence in Primates evolved by genomic amplification, unequal crossover, and sequence homogenization using a 171 bp monomer as the basic seeding unit and 2) centromeric function is linked to relatively short repeated elements, more than higher-order structure. Moreover, our data indicate that complex higher-order repeat structures are a peculiarity of the hominid lineage, showing the more complex organization in humans.


Assuntos
Evolução Biológica , Callithrix/genética , Centrômero/genética , Hylobates/genética , Animais , Linhagem Celular , Humanos , Primatas/genética
4.
Chromosome Res ; 16(1): 17-39, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18293103

RESUMO

In 1992 the Japanese macaque was the first species for which the homology of the entire karyotype was established by cross-species chromosome painting. Today, there are chromosome painting data on more than 50 species of primates. Although chromosome painting is a rapid and economical method for tracking translocations, it has limited utility for revealing intrachromosomal rearrangements. Fortunately, the use of BAC-FISH in the last few years has allowed remarkable progress in determining marker order along primate chromosomes and there are now marker order data on an array of primate species for a good number of chromosomes. These data reveal inversions, but also show that centromeres of many orthologous chromosomes are embedded in different genomic contexts. Even if the mechanisms of neocentromere formation and progression are just beginning to be understood, it is clear that these phenomena had a significant impact on shaping the primate genome and are fundamental to our understanding of genome evolution. In this report we complete and integrate the dataset of BAC-FISH marker order for human syntenies 1, 2, 4, 5, 8, 12, 17, 18, 19, 21, 22 and the X. These results allowed us to develop hypotheses about the content, marker order and centromere position in ancestral karyotypes at five major branching points on the primate evolutionary tree: ancestral primate, ancestral anthropoid, ancestral platyrrhine, ancestral catarrhine and ancestral hominoid. Current models suggest that between-species structural rearrangements are often intimately related to speciation. Comparative primate cytogenetics has become an important tool for elucidating the phylogeny and the taxonomy of primates. It has become increasingly apparent that molecular cytogenetic data in the future can be fruitfully combined with whole-genome assemblies to advance our understanding of primate genome evolution as well as the mechanisms and processes that have led to the origin of the human genome.


Assuntos
Centrômero/genética , Cromossomos de Mamíferos/genética , Evolução Molecular , Ordem dos Genes , Primatas/genética , Animais , Marcadores Genéticos , Humanos , Cariotipagem
5.
Genomics ; 88(5): 564-71, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16765020

RESUMO

In Macaca mulatta, the single rDNA array is flanked by a patchwork of sequences including subregions of human Yp11.2, 4q35.2, and 10p15.3. This composite DNA region is characterized by unique or low-copy sequences, resembling a potentially transcribed region. The analysis of Cercopithecus aethiops, Presbytis cristata, and Hylobates lar suggests that this complex sequence organization could be shared by Old World monkey and lesser ape species. After the lesser apes/great apes divergence, the unique or nonduplicated DNA region underwent amplification and spreading, preferentially marking the p arm of acrocentric chromosomes bearing the rDNA. The molecular analysis of human acrocentric chromosomes revealed some extent of remodeling of the rDNA boundary: near the human NOR, a large 4q35.2 duplication partially resembles that found in MMU; conversely, infrequently represented Yp11.2 sequences totally differed from those of the macaque, and 10p15.3 sequences were lacking. Thus, although evolutionary events modified the sequence organization of the MMU rDNA boundary, its overall sequence feature and the preferential location in vicinity to the NOR have been conserved.


Assuntos
DNA Ribossômico/genética , Evolução Molecular , Macaca mulatta/genética , Animais , Cromossomos Artificiais Bacterianos/genética , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 4/genética , Cromossomos Humanos Y/genética , Sequência Conservada , Duplicação Gênica , Genômica , Humanos , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Primatas/genética , Especificidade da Espécie
6.
Eur J Histochem ; 48(2): 185-90, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15208090

RESUMO

Defensins are a family of host defence peptides that play an important role in the innate immunity of mammalian and avian species. In humans, four beta-defensins have been isolated so far, corresponding to the products of the genes DEFB1 (h-BD1, GenBank accession number NM_005218); DEFB4 (h-Bd2, NM_004942.2), DEFB103 (h-BD3, NM_018661); and DEFB104 (hBD4, NM_080389) mapping on chromosome 8p23.22. We have localized beta-defensin genes on metaphasic chromosomes of great apes and several non-human primate species to determine their physical mapping. Using fluorescent in situ hybridization and BAC probes containing the four beta-defensin genes, we have mapped the homologous regions to the beta-defensin genes on chromosome 8p23-p.22 in non-human primates, while no signals were detected on prosimians chromosomes.


Assuntos
Mapeamento Cromossômico , Primatas/genética , beta-Defensinas/genética , Animais , Linhagem Celular , Haplorrinos , Hominidae , Humanos , Hibridização in Situ Fluorescente/métodos
7.
Mol Biol Evol ; 21(9): 1792-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15201396

RESUMO

In this article, we report studies on the evolutionary history of beta satellite repeats (BSR) in primates. In the orangutan genome, the bulk of BSR sequences was found organized as very short stretches of approximately 100 to 170 bp, embedded in a 60-kb to 80-kb duplicated DNA segment. The estimated copy number of the duplicon that carries BSR sequences ranges from 70 to 100 per orangutan haploid genome. In both macaque and gibbon, the duplicon mapped to a single chromosomal region at the boundary of the rDNA on the marker chromosome (chromosome 13 and 12, respectively). However, only in the gibbon, the duplicon comprised 100 bp of beta satellite. Thus, the ancestral copy of the duplicon appeared in Old World monkeys ( approximately 25 to approximately 35 MYA), whereas the prototype of beta satellite repeats took place in a gibbon ancestor, after apes/Old World monkeys divergence ( approximately 25 MYA). Subsequently, a burst in spreading of the duplicon that carries the beta satellite was observed in the orangutan, after lesser apes divergence from the great apes-humans lineage ( approximately 18 MYA). The analysis of the orangutan genome also indicated the existence of two variants of the duplication that differ for the length (100 or 170 bp) of beta satellite repeats. The latter organization was probably generated by nonhomologous recombination between two 100-bp repeated regions, and it likely led to the duplication of the single Sau3A site present in the 100-bp variant, which generated the prototype of Sau3A 68-bp beta satellite tandem organization. The two variants of the duplication, although with a different ratios, characterize the hominoid genomes from the orangutan to humans, preferentially involving acrocentric chromosomes. At variance to alpha satellite, which appeared before the divergence of New World and Old World monkeys, the beta satellite evolutionary history began in apes ancestor, where we have first documented a low-copy, nonduplicated BSR sequence. The first step of BSR amplification and spreading occurred, most likely, because the BSR was part of a large duplicon, which underwent a burst dispersal in great apes' ancestor after the lesser apes' branching. Then, after orangutan divergence, BSR acquired the clustered structural organization typical of satellite DNA.


Assuntos
DNA Satélite/genética , Evolução Molecular , Primatas/genética , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Cosmídeos , Duplicação Gênica , Genoma , Humanos , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , Pongo pygmaeus/genética , Sequências Repetitivas de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico
8.
Gene ; 275(2): 305-10, 2001 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-11587858

RESUMO

The karyotypes of Eulemur species exhibit a high degree of variation, as a consequence of the Robertsonian fusion and/or centromere fission. Centromeric and pericentromeric heterochromatin of eulemurs is constituted by highly repeated DNA sequences (including some telomeric TTAGGG repeats) which have so far been investigated and used for the study of the systematic relationships of the different species of the genus Eulemur. In our study, we have cloned a set of repetitive pericentromeric sequences of five Eulemur species: E. fulvus fulvus (EFU), E. mongoz (EMO), E. macaco (EMA), E. rubriventer (ERU), and E. coronatus (ECO). We have characterized these clones by sequence comparison and by comparative fluorescence in situ hybridization analysis in EMA and EFU. Our results showed a high degree of sequence similarity among Eulemur species, indicating a strong conservation, within the five species, of these pericentromeric highly repeated DNA sequences.


Assuntos
Lemur/genética , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Sequência de Bases , Southern Blotting , Células Cultivadas , DNA/química , DNA/genética , DNA/metabolismo , Desoxirribonuclease BamHI/metabolismo , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...